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Wave propagation in a dynamic system of soft granular materials
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The wave propagation in a dynamic system of soft elastic granules is investigated theoretically and numeri-
cally. The perturbation theory for simple fluids is applied to the elastic granular system in order to relate the
elastic properties of individual particles with the “thermodynamic” quantities of the system. The properties of
a piston-driven shock are derived from the obtained thermodynamic relations and the Rankine-Hugoniot
relations. The discrete particle simulation of a piston-driven shock wave in a granular system is performed by
the discrete element method. From theoretical and numerical results, the effect of the elastic properties of a
particle on shock properties is shown quantitatively. Owing to the finite duration of the interparticle contact, the
compressibility factor of the elastic granular system decreases in comparison with that of the hard-sphere
system. In addition, the relation between the internal energy and the granular temperature changes due to the
energy preserved with the elastic deformation of the particle. Consequently, the shock properties in soft
particles are considerably different from those in the hard-sphere system. We also show the theoretical predic-
tion of the speed of sound in soft particles and discuss the effect of the elasticity on an acoustic wave.
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[. INTRODUCTION proach, the propagation of the acoustic wai@,11] and the
shock wavd 12,13 in granular materials have been studied
The wave propagation in granular materials can be widelyaccounting for the energy loss during the particle collision.
seen in industrial processes or natural phenomena, and is the In these kinetic analyses, the particle has been treated as a
fundamental subject in the fields of fluid mechanics, strengthigid particle (hard sphere Accordingly, the wave speed
of material, soil mechanics, and physics. It plays an imporgoes to infinity at maximum volumetric concentration since
tant role in energy transport in granular materials. The typithe collision between particles occurs instantaneously. As in-
cal example is the fluidization of granules under vibration,dicated in the studies on a static system, the wave speed does
which is called the vibrofluidized bed. In the vibrofluidized not go to infinity at maximum concentration because the par-
bed, the energy input by a vibrating wall is transmittedticle collision costs a finite time. Similarly, the collision time
within the granular bed by the compression wave and is conmay affect the wave speed in a dynamic system at dense
verted to the local “thermal” energyl—4]. Such a wave is concentration such that the collision occurs frequently.
caused by both the kinetic and the collisional energy transfer, In this study, we examine the wave propagation in a dy-
therefore it shows a different behavior in static and dynamimamic system of soft granular materials. Our interest is
granular systems. mainly focused on the effect of the elastic properties of par-
An elastic wave in a static granular system at maximunticles on the propagating wave. In order to make the role of
(or closely maximum concentration is an important phe- the elasticity clear, we treat the conservative system of
nomenon in the fields of soil mechanics and geophysics. Igranular materials, which consists of perfectly smooth and
such a system, the wave propagates through the contact nefastic particles. As is well known, the wave propagating in
work of the constituent particles. A lot of studies on theactual granular materials decays owing to the energy dissi-
elastic wave propagating in the static granular layer haveation during particle collision. In the case of piston-driven
been carried out theoreticall},6], experimentally{7], and  shock, the particles near the piston solidify with the decrease
numerically[8,9]. Some of these studies have suggested thasf the kinetic energy by nonconservative collisions and, con-
the wave speed depends on the elastic properties of the pasequently, a stationary layer of particles is formed on the
ticle and the confining pressure, and it shows the power-laypiston[12,13. However, it is expected that the constitutive
dependence on the press(i6g. relations derived in this study can be the basis of those in
On the other hand, in a dynamic granular system in whiclhonconservative systems. In addition, the results shown here
the particles move around, the wave propagates by the coman be a rough estimation of wave properties in inelastic
tact between particles, which occurs dynamically, and alsarticles. This is because the effect of the particle elasticity
by particle motion. In order to analyze such a dynamic syseon the propagating wave is, as will be mentioned below, due
tem, the granular kinetic theory has been developed on th® the finite contact time of particles. There is not much
basis of the kinetic theory of molecules. By the kinetic ap-difference between the contact time of elastic particles and
that of inelastic(but nearly elastic particles, provided that
they have the same elastic properties.
*Electronic address: harada@tec.u-ryukyu.ac.jp Besides, we focus on the wave at dilute-medium volumet-
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ric concentration less than 0.5 and do not deal with the w, Diston periodic boundary
denser system. This is because the phase transition due - >/ /
crystallization occurs even in rigid particles at dense concen- L 00 4 o) ) e
tration [14,15, and it is difficult to analyze the system by 110 © -0 ... &) o
means of the statistical approach. N elede 0Qn ©

In this paper, the constitutive relations for the thermody- I i O O © OO )
namic variables in soft granules are derived by the perturba: ? % o o /3 0O
tion approach analogous to that for molecular dynamics. Iny o © o~ o o©
the theoretical analysis, a dimensionless parameter, whicl i . N
represents the influence of the “softness” of the particle on i L.

the macroscopic properties, is introduced. Subsequently, the

properties of a one-dimensional shock wave formed in gran-

ules are derived from the obtained thermodynamic relations.

The theoretical results are compared with the corresponding Fe \/ﬁEp (2R—1)32 @)

results of the discrete numerical simulation. From both re- 3(1_05) '

sults, the effect of the softness of particles on the shock

properties is discussed quantitatively. Furthermore, in the last |n the DEM simulation, the particle motion is calculated

part of the paper, the speed of sound is calculated from thgdividually by integrating the equation of motion. If the

thermodynamic relations of soft granular materials and isarticle overlaps with other particlése., r <2R), the con-

compared with that in a hard-sphere system derived from thgxct force given by Eq2) is exerted on them in the direction

kinetic theory. of their relative position vector. In the case of the contact
between a particle and a solid wall, the normal contact force
is calculated by Eq(l) with R,=« on the assumption that

Il. NUMERICAL METHODS the elastic properties of the wall are the same as those of the
Eparticle.

FIG. 1. Schematic diagram of the calculation system.

In order to examine the detailed properties of the wav In this work. the motion of particles i lculated from th
propagates in granular materials and to confirm the results of S WOrK, the motion of particles 1S calculated 1o €

the theoretical analysis described below, a three-dimensiongﬂgiﬂon IOf n.lﬁt'on W':Eom graVIty.tr':'he ngmerlt():al_;cr_}eme
numerical simulation of granular motions has been per-an € algorithm are the same as tose given by s,
formed. The discrete element methd@EM) proposed by [18]. The particle density, and the radiuR are set to be

Cundall and Strack16] is used for the calculation of the constant, ang, = 2500 k_g/n?r_am_ijo.S mm, r_espectively. .
interaction between particles. The softness of the particle is given by changing the Young’'s

DEM is the method for the Lagrangian simulation of par- modulus, while the Poisson’s ratio is unchanged. In the DEM

ticle motion, and it has been used for the analyses of statiéimu!ation’ the_ time stept has to be set accordi_ng tp the
and dynamic granular systerfts7,18. In DEM, an interpar- elastic propertles SO that the energy of the.pa.trtlcle is con-
ticle (and also a particle-walkcontact is modeled by using a served during coIhslon. We_sdeudetkit Ey pre'(')g“'”afy cal-
spring, and the energy dissipation during the contact is exgula'gons and seét—lx}(sc) 5 for_Ep_légl Pa and 1
pressed by a dashpot and a slider. As described above, thel0 Pa, andAt=2x10"" s for,=1x10" Pa. _
particles are assumed to be perfectly elastic and smooth Figure 1 is the schematic diagram of the calculation do-
spheres in the present work. Therefore, the dissipation effedf@in and the coordinate system. The boundary conditions in
is not considered here and the contact force is treated as’#ndy directions are applied to the periodic boundary. In the
potential force with a cutoff. Consequently, it is identical Z diréction, one boundary is placed on a pistenlid wall
with that of molecular dynamics simulation. which moves with a constant speeg, and the other is a

In the present study, the Hertzian contact force is applied*€d wall. The length of the domain in thedirection is

to the contact force model. The elastic contact force betweefonstant t,=100(R) and the othersl(, L) are changed
spherical particles is given HL9] according to the condition of the particle concentration.

As for the numerical condition, the initial particle concen-
tration, the initial particle velocity and the piston speed are

16 R.R given, while any statistical information is not given at the
= \/_ 17 532 (1)  boundaries in the same way as Woo and Grg@ét. Ini-
972 (K{+K,)?%(Ri+Ry) tially, 90 000 particles are randomly arranged in the calcula-

tion domain and the Maxwell-Boltzmann distribution is ap-

plied to their thermal velocity. The calculation is kept on
where subscripts 1 and 2 indicate the particles in conict, running during the period that the generated wave reflects
and R, denote the particle radii, and; and K, are the several times between the piston and the opposite wall. This
elastic constantsK = (1— cr,%)/pr, E, is Young's modulus  period corresponds to about 6:0.2 s in the simulation. The
and o, is Poisson’s ratip & is the distance between two thermodynamic variables in a cross section are calculated
spheres and if we setas the distance between their centers,from the numerical results of the number density and the
then 6=R;+R,—r. When two spheres are identicaR fluctuation velocity of the particle in the finite volunig,
=R,=R, K;=K,=K), Eq. (1) becomes XLyXAL,, whereAL,=4R.
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ll. THEORETICAL APPROACH where(- - -)q indicates the average over the configurations

. . . . in the reference system, i.e{a)o=/[y---faexgd—Py/
The thermodynamic perturbation method is used in Ordek'l']drl- .dry/Z,. The relation similar to Eq(7) is also de-

to relate the elastic properties of individual particles to the . ; ; . . .
thermodynamic properties of granular materials. This”yed from the Gibbs-Bogoliubov inequalitj24] and is
method is commonly used for the derivation of the equatiorglven by

of state for simple fluid$21-23. In the present study, the
method proposed by Mansoori and Canfi¢kB] is em-
ployed.

A_AO$<CD,>O. (8)

It is found from Eq.(8) that the Helmholtz free energi
floes not exceed the sum of the Helmholtz free energy in the

if the energy dissip_ation during cqllision is neglecf[ed. I:romreference system and the average of the perturbed potential
Eqg. (2), the potential corresponding to the elastic contaCtA0+<q),>O

force between spherical particleégr) is defined as follows: (®')y can be expressed by using the perturbed pair po-

tential ¢’ (= d— ¢, ¢o: the pair potential of the reference

5/2
1— L) . r<2R system and the pair distribution function in the reference
¢(r)= 2R (3 systemg{®(r) as follows:
0, r>2R,
A - ’ 2
wherel = 16R°E/15(1~ o). The total potential energy in (@ >0_27T”Nf0 ¢'(Ngi(r)rdr, ©)

the system® is assumed to be given by the sum of a two-

body interaction potentiap(r) as where n=N/V is the number density. Choosing a hard-

N sphere potential with diameteras the reference potentigl
o= 2 b(rip), (4) r<d, ¢g=co, otherW|se¢_>0 0), gy7’(r) is zero forr<d
i*7=1 and, consequently, E@Q) is expressed as

whereN is the total number of particles in the system apd ) 5 [1E 512 (2) )
is the distance between particleandj. The total potential (®")o=2mnNI'd Jl (1= 0% (x)x%dx,  (10)
energy® is expressed by the sum of the potential of the

reference syster®, and the perturbatiod®’ as wherex=r/d and Z=d/2R.

D=Dyt+ D’ (5 A—A in Eq. (7), and also in inequality8), can be re-
placed withA®—A§, whereA® corresponds to the difference
If the system obeys the classical statistical theory, thedf the free energy from the no-potential system, ik€+=A
Helmholtz free energy is calculated from the configuration —Aigeal (Aigeal IS the Helmholtz free energy of an ideal gas
integral. The difference in the Helmholtz free energy be-Substituting Eq(10) into Eq.(7), the free energyA® is ap-
tween the original and the reference systémA, is ex-  proximately given by
pressed as follows:

1¢
1 A®=AS+27nNId® f (1— x)%%gP (x)x%dx.  (11)
A—Aoz—kTIn<Z—0fV---fexp[—dD/kT]drlmdrN , 1

(6)  UsingA® =A®/NkTandT* =kT/I'(=m,T/I" in the granu-

) i lar system, we obtain a dimensionless form of Ed1) as
whereZ, (=[y- - - fexd —®y/kT]dry- - -dry) is the configu-

rational integral of the reference system,s the occupied 120, (1
volume, andT is the temperaturek is the Boltzmann con- A = AT* + hf (1—- )P (x)x%dx, (12
stant in the statistical mechanics, however if we consider T J1

as the granular temperature: ¢?/3 n?/s?, ¢ is the fluctua-
tion velocity of the particlg k is interpreted simply as a
particle massn, .

Substituting Eq(5) into Eq. (6), the approximation oA
—A, is obtained as follow$21,23:

where v,=n7d%6=4nm(RZ)%3 is the volumetric fraction
of the hard sphere. The pair distribution function of the ref-
erence systenihard-sphere syster,nggz)(x), is obtained
from the integral equation of the distribution function. With
the Percus-Yevick approximatiof25], g{*(x) is approxi-

1 mately given by the following polynomial with respectxo
A—A0=—kTIn(Z—OJV-~-Jexr[—<1>’/kT] [26,27:
@) L 2 )
XeX[{—q)O/kT]drl---drN g (X)=ﬁ{(l+2vh) _GVh(l+0.5Vh) X
-
~{(D"),, (7) +0.5v5(1+ 2v,) 23} (13
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Equation(13) is valid only nearx=1, however 1 in Eq. n
(12) is almost close to unity because the elastic potegtied 0.0 0.2 04 0.6 0.8 1.0 1.2
an actual system is generally close to the hard-sphere poter 300 ———————— 777
tial ¢0_ [ hard sphere z, (Percus-Yevick)
A®* shown in Eq.(12) is related to the compressibility 230 [
factorz=pV/NKT as follows: 5 T"=1x107
20.0
IA* ‘
z=1+n o (14 w150 ¢
The compressibility factor in the hard-sphere systgnis 10.0 F
given by the function of the volumetric fractios, from the i
analytical solution of the Percus-Yevick equati@6,27. It 50

is known that the arithmetic average of the solution of the 7
virial and the Ornstein-Zernike relations is a good approxi- o T
mation of the compressibility in the hard-sphere sysf26i 0.0

and is given by

FIG. 2. Compressibility factoz versusy and n* for various
dimensionless temperaturés .

1+vy+ Vﬁ—l.Svﬁ

Z0= 1) (19
(1= wherev= 7n*/6 is the volumetric solid fraction in the origi-
Substituting Eq(15) into Eq. (14) and integrating Eq(14), ~ nal system anc=E/Nm, is the internal energy per unit
A®* is obtained as a function of* (=8nR%), T*, and: mass. Equatlo(119) is interpreted as the quatlon of state of
the elastic granular system. The temtidA®*/on* corre-
1 3 15 sponds to the virial term. On the other hand, E2) is the
A** =—In(1—v,)+ + ST T relation between the internal energy and the granular tem-
2 1=vh 4(1-vy)? 4 perature. The term T* JA®*/9T* is related to the preserved
L SNt TED), (16) energy due to the elastic deformation, as explained below.

In order to obtaire and ¢ from Eqgs.(19) and(20), some
numerical techniques are needed. The right-hand side of Eq.

where
(16) is calculated numerically for given*, T*, and ¢ by
120, (1 using Simpson’s integral rule, and th&g, which minimizes
S(n*,T*,0)= = J (1— 2x) %59 (x)x2dx the right-hand side of Eq16), is found numerically. Substi-
1

tuting £,,, into Eq. (16), we obtain the approximate value of

3 ) , ) A®* for givenn* and T*. Applying the same procedure to
andv,=mn* °/6. Based on the Gibbs-Bogoliubov inequal- the calculation fom* + An* and T* +AT*, the derivatives

ity (8), the minimum of the right-hand sideRHS) of EQ. 1+ sjae*/on* and T* 9AS*/gT* are also obtained numeri-
(16) with respect to/ can be considered to be the approxi- cally. In this study, we setAT*=0.01T* and An*

e
mate value ofA™. _ _ =0.0In*, respectively.
According to thermodynamics, the equation of state and

the equation for internal energy are expressed by using the IV. RESULTS AND DISCUSSION

Helmholtz free energ®* and are given by
A. Pressure and internal energy of granules

By Egs.(19) and(20), the elastic properties of individual
particles can be related to the macroscopic thermodynamic
properties of granular materials. Figures 2 and 3 sh@nd

UNKT
p=—yz=n

*aAe*
1+n | (17)

an

ex ¢, which are obtained from Eg$§19) and(20), respectively,
E , d [ A 3 A : : ) ; )
T2 | —|=T|Z=T* , (18 plotted against density for various dimensionless temperature
Nk JTINKT 2 aT* T*=m,T/T. As mentioned aboveg{?(x) given by Eq.

) ) (13), which is used for the calculation of E@L6), is valid
respectively. If we considef as the granular temperature, only nearx=1 and deviates from the exact solution as being
Egs.(17) and(18) are expressed as follows: apart fromx=1. The numerical solution of the Percus-
Yevick equation have been shown by Throop and Bearman
[29]. In Figs. 2 and 3, the results that the difference between
Eqg. (13) and the solution by Throoet al. is less than 1% of
the absolute value are shown by the solid lines, and the other
less-accuracy data are shown by the broken lines.

, (20) It is shown in Fig. 2 that, whemw (or n*) is small, the
compressibility factoz approaches 1, which corresponds to

p=ppVTZ, 7=

&Ae*
1+n* , (19)

n*

3 oA
e=¢T, lﬂ= E_T P
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n stants,T* can be rewritten as follows:
0.0 0.2 04 0.6 08 L0 12 )
25— 77T 7 5 l1-o0; _
s o/ T = —7? 2(0)?, 21
h where the relation for the Maxwell-Boltzmann velocity
20 - =3m(c)?/8 is used.
i The mean duration of the Hertzian contact is obtained
S from the differential equation of the relative distance be-
I tween the colliding particles. The duration of contact with
1.5 e the impact velocity . is given by[19]
e mum. 7"=1x10? (E,=1x10°% 0,=0.30, T=1.119)
o num. T’=1x10" (E=1x10", 0,=0.30, T=1.119) | S
o num. T'=1x10* (E,=1x10", 6,=0.30, T=0.112) _ m
¢ num. T°=1x10% (E£=1x109. of;=0.30, T=1,119) 1 1=2.943—, (22
Foo mum T=1x106 (E=1x10° 6,2030, 7=0.112) 1 Ve
1.0 S T T T YT T S Y S T S T T N S S S S B

TR
00 01 02 03 04 05 06064 where 8,=[15my(1—03)/8J2RE,]?* is the approach
v distance at the maximum compression. The coefficient on the
FIG. 3. ¢ versusy andn* for various dimensionless tempera- RHS of Eq.(22) is resultant from thd" functions(see Ref.
turesT* (E, is Young’s modulus in Par, is Poisson’s ratio, and@ [19)). o
is the granular temperature in’fe®). The mean impact velocity, is given by the mean relative
velocity v2¢ multiplied by a factor due to the impact angle
that of an ideal gag is increased with the increaseinand,  2/3 (=J§'*cos@sin 26d6), whered is the angle between the
if T* is significantly small, it is close to that of the hard- relative velocity vector and the relative position vector of the
sphere systern, given by Eq.(15). On the other hand, & colliding particles. Substituting. = 2\/2¢/3 into Eq.(22), t.
is increased, which means that the particle is heavier ani$ expressed as follows:
softer for a given fluctuation velocitg, becomes small and 2\ 205
deviates from the hard-sphere system. As is expected, if the t =5 913?( l_ap) = -15
. c— 2 Pp (c) . (23
density and the granular temperature are constant, the pres- Ep
sure is smaller in the softer particles. ) o
Figure 3 shows tha is increased with the increase in  ©On the other hand, the mean free timg which is the
T*. This implies that the total energy is divided into the Mean time between collisions of a particle, can be roughly
kinetic (therma) energy and the elastic energy due to theestn.nated as foIIc.)ws.. On thg_ assumption that the effect of the
deformation of the particle. WheR* is small, ¢ is close to particle deformation is significantly small, i.e., the mean free

the value for the monatomic gas=3/2. This is because the UMe iS the same as that of hard sphefg,is obtained

interaction between particles occurs instantaneously andf®m the mean free time in the dilute systey and the

consequently, most of the energy turns into the kinetic enfadial distribution function of the hard-sphere system,

_ ~(2 .
ergy. On the other hand, a&&* increasesy increases be- 9(»[=g§7(1)] as follows[30]:
cause the contact time is significantly large and some part of t
the energy is always preserved as the elastic energy. The IAZLO_ (24)
guantitative discussions on the contact time are given below. 9(»)
¢ can be also estimated numerically by the DEM simula-, . . - _
tion. It is obtained from the following procedure. The par-t“) is obtained by dividing the mean free patg=R/3y2v

ticles are arranged randomly in a fixed volume so as not t(l))y ¢. Substituting this relation into Eq24), we obtain

overlap each other, and the Maxwell-Boltzmann velocity dis- R
tribution is applied to them in the form of initial velocity ty=———. (25)
After the simulation is started, the total kinetic energy of the 3\/§ch(V)

system decreases from the initial energy and then it becom
constanty is given by the ratio of the initial energy per unit

massc?/2 to the granular temperatufén a steady state. The

e . .
éonsequently, the ratio of the mean contact titpego the
mean free time, is calculated from Eq923) and (25) as

results obtained from the DEM simulation are also shown in ¢ 1— g'g B

Fig. 3 by symbols. It is found thay obtained theoretically t=;~=25.08g(»)| py—¢ (c)¥5=21.0%g(v)T*25,
agree well with the corresponding results by the DEM simu- (26)
lation.

The dimensionless temperatufé (=m,T/I'), which is  From Eq.(26), it is found thatT* is simply the function ofs
derived in the process of the perturbation analysis, can bandt,. If v is given, T* is directly related to the contact
understood more clearly by considering the relation to thaime. By using Eq.(26), we can estimate the ratio of the
contact time. Using the mean fluctuation veloaitythe par-  contact time to the mean free time frofif. For example,
ticle radiusR, the particle density,, and the elastic con- T*=1x10"* corresponds to,=0.069 atv=0.1.
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tUw/do tUw/ho tUw/ho 60 1 . .
_ R-H (z=1) ]
[ ® num.V, =0.0065 ]
50 [ o 1
0.65| - / [ © num.v,=0.0486 ]
/ [ X num.v,=0.105 ] 741
T 8 mmy,=0291 — - E D
[ > ]
§ 30 | I B
Q [ o--=mTT T o
LA T e Memmmmood oo %
20 - X ]
¢ LT P S §J
/ 10 ]
000- Z/ho Z/ho Z/ho [
: oo L v vy M-
@ Mpo=1.24 (b) Mpo=3.71 (¢) Mpo=6.18 0 2 4 6 8 Inf.
My
FIG. 4. Propagation of piston-driven shock wave in granular
materials (contour of solid fractionv), E,=1x 10’ Pa ando, FIG. 5. Relation between the piston Mach number for an ideal
=0.30. gas, My, and density ratiop,/pg for E,=1X 10’ Pa andop

=0.30.

B. Propagation of a piston-shock in granules
In order to examine the properties of the shock wave | those of an ideal gas. The density ratio and the shock speed
prop Yor a strong shocKinfinite M) can be calculated from

soft granular materials, the simulation of the propagation of Ehankine-Hugoniot relations and they are expressed by the

piston-driven shock wave in elastic, smooth particles have_.. e
been performed. As explained above, the initial density, theratIo of specific heaty as[31]

initial granular temperature, and the piston speed are given

as the simulation condition and any boundary condition for P1_ E (28)
statistical variables such as the granular temperature is not po y—1'
applied.
Figure 4 shows the typical results of the DEM simulation Us y+1
for the density profile around a piston-driven shock wave in U_w T~y (29

elastic granular materials. The initial volumetric fraction of
particle vy is 0.105. The elastic properties of the particle are

indicated in the caption of Fig. 4. The horizontal axis is the obtairp, / po=4 andU,/u,,=4/3 for a dilute limit. The
S w '

Fjime”SiPmeS? distan@)\o (A= R/3J§_v0). and the ver_tical numerical results in a dilute caseyg= 0.0065) is close to the
is the dimensionless timei,, /\o. M, indicates the piston 41 4ve values for infinité\]

Mach number calculated by the speed of sound in a dilute 5q v is increased, t

system and is defined by the initial granular temperallye  ,ose of gases. Especially aroungt>0.1, the shock speed is
and the piston speeul, as suddenly increased and it is considerably large in comparison
_ —— with that of an ideal gas. The dependence of the shock prop-
Mpo=Uw/V¥To, @7 erties on the solid concentration and also the elastic proper-

. - ties of the particle are explained in the following section.
wherey corresponds to the ratio of specific heats thermody- P P 9

namically and is 5/3 for monatomic gas. Note thag, does 50
not indicate the ratio of the piston speed to the speed of r
sound in a dense system, because the speed of sound is d
pendent on the solid concentration as explained below. Fig- 45 [
ure 4 shows that the compression wave is generated in fron [
of the piston and it reflects repeatedly at the piston and the .
opposite wall with the change in the wave speed. These fea3, 30|
tures are similar to those of the piston-driven shock wave [

respectively. Substituting=5/3 into Egs.(28) and(29), we

po-
he shock properties deviate from

T
R-H(z=1)
num.v, =0.0065
num.v, =0.0486
num.v, =0.105
num.v, =0.291

Ll B Y

propagating in gas. [

Figure 5 shows the numerical results of the density ratio 20 el Tesel 7
behind and before the shock fropt /po (=v,/vy), and I N S B
Fig. 6 shows the ratio of the shock speed to the piston spee [ T e ff ol
Us/uy,. The simulation for infiniteM , is performed by set- 1 5 s P g It
ting the initial granular temperatuiig,=0. The solid lines in Mo
these figures indicate the results obtained from Rankine- ?
Hugoniot relations for an ideal g481]. It is found that, if FIG. 6. Relation between the piston Mach number for an ideal

the system is dilutexf,=0.0065), it is close to the molecular gas, M, and dimensionless shock speéti/u, for E,=1
gas system and the properties of the shock wave agree with10’ Pa ando,=0.30.
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C. Effect of elasticity on shock properties 50 —— ———

By using the equation of staf&g. (19)] and the equation i
for internal energy{Eq. (20)], the properties of shock wave 40
propagated in elastic particles can be obtained theoretically I
For simplicity, a one-dimensional strong shock wave gener- 34 [
ated by a piston is considered. Based on the assumption thi«§ i
the pressure and the internal energy before the shock fron&

mu,2IT=5.58x107
mu A=5.58x10° ]
m,u, 2 1=5.58%10"

are much smaller than those behind the shock front, or
Rankine-Hugoniot conditions for a piston shock wave are i ;
given by 10 o num. mu?/I=5.58x10"(E,=1x10%0,=0.30, u,=2.5) 3
t® num.mu,}/T=5.58%10° (E,=1x107,6,=0.30, u,=2.5) ]
poUs=p1(Us— U, (30 0 [ 7 o M L5580 (100,030, u25) |
5 ) 0.001 0.01 01
poUs=p1tp1(Us—uy)®, (3D v
1 1 P FIG. 7. Relation between the solid fraction before shock front,
Engi(us_ Uw)2+ L +eq, (32 v, and the densit.y ratigol{po fqr a strong.shock a‘fo=0 (E.p is
P1 Young's modulus in Pag, is Poisson’s ratio, and,, is the piston
speed in m/s

whereu,, indicates the piston speeldy is the shock propa-

gation speedp(=ppv) is the bulk density, an@ is the in-  rametemm u2/T. In order to obtaim} andT} , the Newton-
ternal energy per unit mass. The subscripts 0 and 1 '”d'catﬁaphson method is applied to Eq89) and (40). Let the

the values before and behind the shock front, respectively. left-hand sides of Eq(39) and (40) equal f(n¥ ,T*) and

If pg (or vg) andu,, are known, the following relations * ok . ! )
. "2 g(ny ,T7), respectively, the following relations are calcu-
for p;, p1, ande; are obtained from Eq$30)—(32): lated by iteration:

L ) (33 of of
pP1—Po ar+ b* = —f, (41)
an* aT*
e;,— su2=0. (34)
- , 9 . 99 &
On substitutingp= mp,n*/6, the above relations are ex- cart—-b*=-g, (42
pressed as functions of andT*, respectively, and are an gt
ke wherea* =(n¥) .1~ (n¥),, b*=(T%), 1~ (T}), andl is
p(n¥ T%)— —Ppugv 01 _p, (35  theiteration number. The derivativesfandg are calculated
6 ny —ng numerically. If the properties of the particle suchmg and
I', the piston speed,,, and the density before the shock
e(n},T})—3ui=0. (360)  [po(=ppro=ppmn§/6)] are given, the properties for the

strong shock can be calculated by usimy and T which

From Eqs(19) and(20), p(n*,T*) ande(n*,T*) are given e ghtained by iteration: density ratio

as follows:
p1/po=n’1’/ng ; (43)
p(n* T*)=%(£) n*T*z(n*,T*) (37
’ 6 \mp o shock speed
T* Us=niu,/(n}—n§); (44)
e(n*,T*): - l//(n*,T*). (38) S 1Yw 1 0
P temperature behind the shock
Substituting Eqs(37) and (38) into Egs.(35) and (36), the _
following relations are obtained: T,=ITy/mg; (45)

m.u2\ n*n* and elastic energy behind the shock
n’l‘T’l‘z(n’l‘,T’l‘)—( é W) °2-=0, (3 ,
L' Jn¥—n? uz 3rT: .
€e1=F5 — .
) 2 2m,
Phw|
T (1, 1)~ E( T )_0' (40) The density ratigp,/pg and the ratio of the shock speed

to the pistonU,/u,, obtained from Eqs(43) and (44) are
From the above relations, it is found that the properties of theshown in Figs. 7 and 8, respectively. In the same way as
strong shock wave are characterized by a dimensionless p&igs. 2 and 3, less-accuracy data caused by the approximate
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40 12 ———————r
[ © num. mpuwz/F—S 58><10 (E 1><106 -0 30 u —2 5) L
3.5 [ ® num.mu,’/T=558x10° (E,=1x10",0, _0 30, 1,=2.5) | ] o i
I o num. mu,T=5.58x10" (E,=1x10° 0'—0 30, u,=2.5) ] T v
3.0 7 hard sphere (Percus-Yevick) ] : 08 L >
[ /1] [ 2 X102/ /
O theo. m,}1T=5.58x10° /] DEN theo- e Sy
S 25F myie,? */T=5.58x10 - < 06 2 1=5.58x10° 1
= : myh,}1=5.58x10° R = i Miphh
20 F ] 04 |- L
O num. m,u,, 2/I=5.58x10" E,= =1x10%0, ,=0.30, 1,=2.5)
L5 e T 02 - o num. mu,r=5.58x10° (E,=1x107,6,=0.30, u,=2.5) ]
F 1 [ 9 num.mu 2/1‘—5 58><10 (E 1x109 —0 30, u, —2 5)
1.0 e e — 0.0
0.001 0.01 0.1 0.64 0.001 0.01 0_1 0.64
Vo Vo

FIG. 8. Relation between the solid fraction before shock front, FIG. 9. Relation between the solid fraction before shock front,
vo, and the dimensionless shock spékdu,, for a strong shock at  »,, and the dimensionless granular temperature behind shock front
To=0 (E, is Young's modulus in Pag, is Poisson’s ratio, and,, 3T, /u? for a strong shock af,=0 [Ep: Young's modulus(Pa,
is the piston speed in mis o, Poisson’s ratio and,, : piston speedm/s)].

distribution function are shown by the broken lines. Figuresquently, the shock speed is decreased compared with that in
7 and 8 also show the corresponding results obtained frorihe hard-sphere system so as to satisfy the mass conservation
the DEM simulation. They are calculated on the conditiongiven by Eq.(30).

that the granular temperature before the shockis 0. It is The density ratio and the shock speed in rigid granular
found that the numerical and theoretical results show excelmaterials have been derived from the granular kinetic theory
lent agreements on various conditions for density and temanalogous to that of dense gases. Goldshgel. [12] have
perature. defined the radial distribution functiay(») for granular ma-

If the system is adequately dilute, the effect of the particleterials, which goes to infinity at the maximum packing
collision is insignificant, and in consequence the shock in=vy, and have derived the density ratio and the shock
granular materials behaves as that in ideal gases regardlessspieed from the virial equation:
the elasticity of the constituent particle. Figures 7 and 8 show

that the theoretical results approach to the values for ideal p1_At4vig(vy) (49
gas, i.e..,p1/pp=4 andU¢/u,,=4/3, respectively, with de- po 1+4v,9(vy)’ )
creasingvy,.
In the case of rigid particles, the density ratio and the Us 4+4v19(vy)
shock speed are calculated from the compressibility factor .. 3 (50)
derived from the Percus-Yevick equatifdaq. (15)] and Egs. W
30—(32), and are where
p1_ 3+2zo(vy1)
oo Zo(v) (47) 9(v) T (51)
Us 34247y We compared the solutions by the Percus-Yevick approxima-
-3 (48 tion [Egs.(47) and(48)] with Goldshtein’s modelEgs. (49)
w

and (50)] for vy, =0.64 (random closest packinghumeri-
cally. Both results do not have a significant differeritess
for the strong shock. As can be seen in Eidp), if the system  than several percent of the absolute valvith regard to the
is dilute, the virial term in the equation of state is vanishedshock properties up to,=0.4.
and z; is close to 1. In consequence, Eq47) and (48) Figure 9 shows the ratio of the kinetic energy behind the
approach asymptotically to Eq$28) and (29) as zo ap-  shock 3T,/2 to the internal energg, =u2/2 [see Eq.(34)]
proaches to 1. The solutions of Eqd7) and (48) are also  obtained from Eq(45) and the corresponding results by the
plotted in Figs. 7 and 8. In order to obtain these results, th&EM simulation. It is found that both results are in agree-
numerical iteration is used since E¢7) is an implicit func-  ment quantitatively. As mentioned above, the internal energy
tion with respect tov;. in elastic particles is divided into the kinetic energy and the
From Figs. 7 and 8, it is found that the properties of theelastic energy. If the system is dilute or the particle is suffi-
shock are close to those Of the hard-sphere system if theiently hard such that the collision between particles occurs
dlmenS|onIess parameten,uy, 2/T is significantly small. As instantaneously, most of the internal energy behind the shock
myu /F is increased, the density behind the shock is in-turns into the kinetic energy, and the granular temperakyre
creased due to the compressibility of the particles. Conseis close tou? «/3. On the other hand, if the system is dense or
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the constituent particle is soft, some of the energy is stored a: n

the elastic deformation. From Fig. 9, it is found that the ratio 00 0.2 04 0.6 0.8 10 12

of the elastic energy to the total energy depends on the pa 300———T———T———7 71— 117

rameterm,u/T", and is increased as,u3/I" is increased. i hard sphere (Savage, 1988 by
From these results, it is found that the shock wave propa-  29f Feix10° ‘

gating in soft granules is influenced by the elastic properties

of the constituent particles. As is mentioned above, the en- 2007
ergy dissipation due to inelastic collisigimcluding friction) Q f
causes a drastic change in the wave propagation. Furthelt& 139¢
more, in many actual systems, such as vertically vibrated S :
beds, the force considerably affects the wave propagatior 100}
and it complicates the matter. The constitutive relations ob- f
tained from this analysis are derived on the assumption tha 50¢
the system is idealize@.e., conservative, in the absence of f
the gravity, however, they are useful for understanding the 0.0 Lo
dynamic properties of soft particles in various systems.

D. Speed of sound FIG. 10. Speed of sound in elastic granular materials.

The speed of sound in a dynamic system of soft granuletp 3/2 because the internal energy merely consists of the
can be obtained from the equation of stgfe. (19)] and the ~ kinetic energy. Consequently, E¢p4) becomes *2mm

equation for the internal enerdyEq. (20)]. The speed of 5 B
sounda is given from the adiabatic change of the pressure as a= \/ZOT( 1+ -zp+ — _ZO) ] (56)
follows: 37 zpdv
7 179 Equation(56) agrees with the speed of sound in the hard-
a= \/ _p) = \/_(_p) (52)  sphere system, which is derived from the kinetic theory of
ap/ pp\dv/ granular materials without energy dissipatidi®].

_ _ . Figure 10 shows the dimensionless speed of sauiid”
From the thermodynamic relationsi/dv) is expressed as obtained from Eq(54). The derivatives ofz and ¢ in Eq.

follows: (54) are calculated numerically in the same way as the
method used in the perturbation analysis. From Fig. 10, it is
ap ap T [dp\?foe\ ! found that the speed of sound decreases with the increase in
— | =l t o) o (53 T* for a givenn* (or v). That is, the propagation of an
v dv por?\dT) \aT . . . . )
s T Fp v v acoustic wave in soft particles is slower than that in hard

Expressing each term of E€G3) in z and ¢ by using Egs. particles.

(19 and(20), and then substituting into E¢52), we obtain V. CONCLUSIONS

the speed of sound in elastic granules as ] ] ) o
Theoretical and numerical studies on wave propagation in

q v(iz a dynamic granular system have been carried out. The ther-
a= z7‘[1+2+z 5) , (549  modynamic perturbation method has been applied to the
T elastic granular system and some thermodynamicrelations
have been derived. The properties of the shock wave in soft
particles derived theoretically have been in an excellent
[2+T(92/3T), ]2 agreement with the results of the numerical simulation by the
- = discrete element method. Moreover, the speed of sound has
Y+T(aylaT), been derived theoretically and compared with the previous
o o study by the kinetic approach. The analyses have quantita-
If the system is dilute, the compressibility factor 1 and  tjvely shown that, from the thermodynamic point of view, the
= 3/2 because the stored energy due to the elastic deformgoftness of the particle influences the wave not only by a
tion is significantly small compared to the kinetic energy.change in the compressibility, but also by a reduction in the
Substituting these values into EG4), the speed of sound temperature due to the conversion to the elastic energy.
for a dilute limit is obtained as

where
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