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Wave propagation in a dynamic system of soft granular materials
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The wave propagation in a dynamic system of soft elastic granules is investigated theoretically and numeri-
cally. The perturbation theory for simple fluids is applied to the elastic granular system in order to relate the
elastic properties of individual particles with the ‘‘thermodynamic’’ quantities of the system. The properties of
a piston-driven shock are derived from the obtained thermodynamic relations and the Rankine-Hugoniot
relations. The discrete particle simulation of a piston-driven shock wave in a granular system is performed by
the discrete element method. From theoretical and numerical results, the effect of the elastic properties of a
particle on shock properties is shown quantitatively. Owing to the finite duration of the interparticle contact, the
compressibility factor of the elastic granular system decreases in comparison with that of the hard-sphere
system. In addition, the relation between the internal energy and the granular temperature changes due to the
energy preserved with the elastic deformation of the particle. Consequently, the shock properties in soft
particles are considerably different from those in the hard-sphere system. We also show the theoretical predic-
tion of the speed of sound in soft particles and discuss the effect of the elasticity on an acoustic wave.
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I. INTRODUCTION

The wave propagation in granular materials can be wid
seen in industrial processes or natural phenomena, and i
fundamental subject in the fields of fluid mechanics, stren
of material, soil mechanics, and physics. It plays an imp
tant role in energy transport in granular materials. The ty
cal example is the fluidization of granules under vibratio
which is called the vibrofluidized bed. In the vibrofluidize
bed, the energy input by a vibrating wall is transmitt
within the granular bed by the compression wave and is c
verted to the local ‘‘thermal’’ energy@1–4#. Such a wave is
caused by both the kinetic and the collisional energy trans
therefore it shows a different behavior in static and dynam
granular systems.

An elastic wave in a static granular system at maxim
~or closely maximum! concentration is an important phe
nomenon in the fields of soil mechanics and geophysics
such a system, the wave propagates through the contac
work of the constituent particles. A lot of studies on t
elastic wave propagating in the static granular layer h
been carried out theoretically@5,6#, experimentally@7#, and
numerically@8,9#. Some of these studies have suggested
the wave speed depends on the elastic properties of the
ticle and the confining pressure, and it shows the power-
dependence on the pressure@6#.

On the other hand, in a dynamic granular system in wh
the particles move around, the wave propagates by the
tact between particles, which occurs dynamically, and a
by particle motion. In order to analyze such a dynamic s
tem, the granular kinetic theory has been developed on
basis of the kinetic theory of molecules. By the kinetic a
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proach, the propagation of the acoustic wave@10,11# and the
shock wave@12,13# in granular materials have been studi
accounting for the energy loss during the particle collisio

In these kinetic analyses, the particle has been treated
rigid particle ~hard sphere!. Accordingly, the wave speed
goes to infinity at maximum volumetric concentration sin
the collision between particles occurs instantaneously. As
dicated in the studies on a static system, the wave speed
not go to infinity at maximum concentration because the p
ticle collision costs a finite time. Similarly, the collision tim
may affect the wave speed in a dynamic system at de
concentration such that the collision occurs frequently.

In this study, we examine the wave propagation in a d
namic system of soft granular materials. Our interest
mainly focused on the effect of the elastic properties of p
ticles on the propagating wave. In order to make the role
the elasticity clear, we treat the conservative system
granular materials, which consists of perfectly smooth a
elastic particles. As is well known, the wave propagating
actual granular materials decays owing to the energy di
pation during particle collision. In the case of piston-driv
shock, the particles near the piston solidify with the decre
of the kinetic energy by nonconservative collisions and, c
sequently, a stationary layer of particles is formed on
piston @12,13#. However, it is expected that the constitutiv
relations derived in this study can be the basis of those
nonconservative systems. In addition, the results shown
can be a rough estimation of wave properties in inela
particles. This is because the effect of the particle elasti
on the propagating wave is, as will be mentioned below, d
to the finite contact time of particles. There is not mu
difference between the contact time of elastic particles
that of inelastic~but nearly elastic! particles, provided that
they have the same elastic properties.

Besides, we focus on the wave at dilute-medium volum
©2003 The American Physical Society05-1
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ric concentration less than 0.5 and do not deal with
denser system. This is because the phase transition du
crystallization occurs even in rigid particles at dense conc
tration @14,15#, and it is difficult to analyze the system b
means of the statistical approach.

In this paper, the constitutive relations for the thermod
namic variables in soft granules are derived by the pertu
tion approach analogous to that for molecular dynamics
the theoretical analysis, a dimensionless parameter, w
represents the influence of the ‘‘softness’’ of the particle
the macroscopic properties, is introduced. Subsequently
properties of a one-dimensional shock wave formed in gr
ules are derived from the obtained thermodynamic relatio
The theoretical results are compared with the correspon
results of the discrete numerical simulation. From both
sults, the effect of the softness of particles on the sh
properties is discussed quantitatively. Furthermore, in the
part of the paper, the speed of sound is calculated from
thermodynamic relations of soft granular materials and
compared with that in a hard-sphere system derived from
kinetic theory.

II. NUMERICAL METHODS

In order to examine the detailed properties of the wa
propagates in granular materials and to confirm the result
the theoretical analysis described below, a three-dimensi
numerical simulation of granular motions has been p
formed. The discrete element method~DEM! proposed by
Cundall and Strack@16# is used for the calculation of th
interaction between particles.

DEM is the method for the Lagrangian simulation of pa
ticle motion, and it has been used for the analyses of st
and dynamic granular systems@17,18#. In DEM, an interpar-
ticle ~and also a particle-wall! contact is modeled by using
spring, and the energy dissipation during the contact is
pressed by a dashpot and a slider. As described above
particles are assumed to be perfectly elastic and sm
spheres in the present work. Therefore, the dissipation e
is not considered here and the contact force is treated
potential force with a cutoff. Consequently, it is identic
with that of molecular dynamics simulation.

In the present study, the Hertzian contact force is app
to the contact force model. The elastic contact force betw
spherical particles is given by@19#

F5A 16

9p2

R1R2

~K11K2!2~R11R2!
d3/2, ~1!

where subscripts 1 and 2 indicate the particles in contactR1
and R2 denote the particle radii, andK1 and K2 are the
elastic constants@K5(12sp

2)/pEp , Ep is Young’s modulus
and sp is Poisson’s ratio!. d is the distance between tw
spheres and if we setr as the distance between their cente
then d5R11R22r . When two spheres are identical (R1
5R25R, K15K25K), Eq. ~1! becomes
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F5
A2REp

3~12sp
2!

~2R2r !3/2. ~2!

In the DEM simulation, the particle motion is calculate
individually by integrating the equation of motion. If th
particle overlaps with other particles~i.e., r ,2R), the con-
tact force given by Eq.~2! is exerted on them in the directio
of their relative position vector. In the case of the conta
between a particle and a solid wall, the normal contact fo
is calculated by Eq.~1! with R25` on the assumption tha
the elastic properties of the wall are the same as those o
particle.

In this work, the motion of particles is calculated from th
equation of motion without gravity. The numerical schem
and the algorithm are the same as those given by Tsujiet al.
@18#. The particle densityrp and the radiusR are set to be
constant, andrp52500 kg/m3 andR50.5 mm, respectively.
The softness of the particle is given by changing the Youn
modulus, while the Poisson’s ratio is unchanged. In the DE
simulation, the time stepDt has to be set according to th
elastic properties so that the energy of the particle is c
served during collision. We decidedDt by preliminary cal-
culations and setDt5131025 s for Ep513106 Pa and 1
3107 Pa, andDt5231026 s for Ep513109 Pa.

Figure 1 is the schematic diagram of the calculation d
main and the coordinate system. The boundary condition
x andy directions are applied to the periodic boundary. In t
z direction, one boundary is placed on a piston~solid wall!
which moves with a constant speeduw , and the other is a
fixed wall. The length of the domain in thez direction is
constant (Lz51000R) and the others (Lx , Ly) are changed
according to the condition of the particle concentration.

As for the numerical condition, the initial particle conce
tration, the initial particle velocity and the piston speed a
given, while any statistical information is not given at th
boundaries in the same way as Woo and Greber@20#. Ini-
tially, 90 000 particles are randomly arranged in the calcu
tion domain and the Maxwell-Boltzmann distribution is a
plied to their thermal velocity. The calculation is kept o
running during the period that the generated wave refle
several times between the piston and the opposite wall. T
period corresponds to about 0.1;0.2 s in the simulation. The
thermodynamic variables in a cross section are calcula
from the numerical results of the number density and
fluctuation velocity of the particle in the finite volumeLx
3Ly3DLz , whereDLz54R.

FIG. 1. Schematic diagram of the calculation system.
5-2
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WAVE PROPAGATION IN A DYNAMIC SYSTEM OF . . . PHYSICAL REVIEW E 67, 061305 ~2003!
III. THEORETICAL APPROACH

The thermodynamic perturbation method is used in or
to relate the elastic properties of individual particles to
thermodynamic properties of granular materials. T
method is commonly used for the derivation of the equat
of state for simple fluids@21–23#. In the present study, th
method proposed by Mansoori and Canfield@23# is em-
ployed.

An elastic contact force can be treated as a potential fo
if the energy dissipation during collision is neglected. Fro
Eq. ~2!, the potential corresponding to the elastic cont
force between spherical particlesf(r ) is defined as follows:

f~r !5H GS 12
r

2RD 5/2

, r<2R

0, r .2R,

~3!

whereG516R3Ep/15(12sp
2). The total potential energy in

the systemF is assumed to be given by the sum of a tw
body interaction potentialf(r ) as

F5 (
i . j 51

N

f~r i j !, ~4!

whereN is the total number of particles in the system andr i j
is the distance between particlesi and j. The total potential
energyF is expressed by the sum of the potential of t
reference systemF0 and the perturbationF8 as

F5F01F8. ~5!

If the system obeys the classical statistical theory,
Helmholtz free energyA is calculated from the configuratio
integral. The difference in the Helmholtz free energy b
tween the original and the reference systemA2A0 is ex-
pressed as follows:

A2A052kT lnS 1

Z0
E

V
•••E exp@2F/kT#dr1•••drND ,

~6!

whereZ0 (5*V•••*exp@2F0 /kT#dr1•••drN) is the configu-
rational integral of the reference system,V is the occupied
volume, andT is the temperature.k is the Boltzmann con-
stant in the statistical mechanics, however if we consideT

as the granular temperature (5c2/3 m2/s2, c is the fluctua-
tion velocity of the particle!, k is interpreted simply as a
particle massmp .

Substituting Eq.~5! into Eq. ~6!, the approximation ofA
2A0 is obtained as follows@21,23#:

A2A052kT lnS 1

Z0
E

V
•••E exp@2F8/kT#

3exp@2F0 /kT#dr1•••drND
;^F8&0 , ~7!
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where ^•••&0 indicates the average over the configuratio
in the reference system, i.e.,̂a&05*V•••*a exp@2F0 /
kT#dr1•••drN /Z0. The relation similar to Eq.~7! is also de-
rived from the Gibbs-Bogoliubov inequality@24# and is
given by

A2A0<^F8& 0 . ~8!

It is found from Eq.~8! that the Helmholtz free energyA
does not exceed the sum of the Helmholtz free energy in
reference system and the average of the perturbed pote
A01^F8&0.

^F8&0 can be expressed by using the perturbed pair
tential f8 (5f2f0 , f0: the pair potential of the referenc
system! and the pair distribution function in the referenc
systemg0

(2)(r ) as follows:

^F8&052pnNE
0

`

f8~r !g0
(2)~r !r 2dr, ~9!

where n5N/V is the number density. Choosing a har
sphere potential with diameterd as the reference potential~if
r ,d, f05`, otherwisef050), g0

(2)(r ) is zero for r ,d
and, consequently, Eq.~9! is expressed as

^F8&052pnNGd3E
1

1/z

~12zx!5/2g0
(2)~x!x2dx, ~10!

wherex5r /d andz5d/2R.
A2A0 in Eq. ~7!, and also in inequality~8!, can be re-

placed withAe2A0
e , whereAe corresponds to the differenc

of the free energy from the no-potential system, i.e.,Ae5A
2Aideal (Aideal is the Helmholtz free energy of an ideal gas!.
Substituting Eq.~10! into Eq. ~7!, the free energyAe is ap-
proximately given by

Ae5A0
e12pnNGd3E

1

1/z

~12zx!5/2g0
(2)~x!x2dx. ~11!

UsingAe* 5Ae/NkT andT* 5kT/G(5mpT/G in the granu-
lar system!, we obtain a dimensionless form of Eq.~11! as

Ae* 5A0
e* 1

12nh

T*
E

1

1/z

~12zx!5/2g0
(2)~x!x2dx, ~12!

wherenh5npd3/654np(Rz)3/3 is the volumetric fraction
of the hard sphere. The pair distribution function of the r
erence system~hard-sphere system!, g0

(2)(x), is obtained
from the integral equation of the distribution function. Wi
the Percus-Yevick approximation@25#, g0

(2)(x) is approxi-
mately given by the following polynomial with respect tox
@26,27#:

g(2)~x!5
1

~12nh!4
$~112nh!226nh~110.5nh!2x

10.5nh~112nh!2x3%. ~13!
5-3
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Equation~13! is valid only nearx51, however 1/z in Eq.
~12! is almost close to unity because the elastic potentialf in
an actual system is generally close to the hard-sphere po
tial f0.

Ae* shown in Eq.~12! is related to the compressibilit
factor z5pV/NkT as follows:

z511n
]Ae*

]n
. ~14!

The compressibility factor in the hard-sphere systemz0 is
given by the function of the volumetric fractionnh from the
analytical solution of the Percus-Yevick equation@26,27#. It
is known that the arithmetic average of the solution of
virial and the Ornstein-Zernike relations is a good appro
mation of the compressibility in the hard-sphere system@28#
and is given by

z05
11nh1nh

221.5nh
3

~12nh!3
. ~15!

Substituting Eq.~15! into Eq. ~14! and integrating Eq.~14!,
Ae* is obtained as a function ofn* (58nR3), T* , andz:

Ae* 5
1

2
ln~12nh!1

3

12nh
1

3

4~12nh!2
2

15

4

1S~n* ,T* ,z!, ~16!

where

S~n* ,T* ,z!5
12nh

T*
E

1

1/z

~12zx!5/2g0
(2)~x!x2dx

andnh5pn* z3/6. Based on the Gibbs-Bogoliubov inequa
ity ~8!, the minimum of the right-hand side~RHS! of Eq.
~16! with respect toz can be considered to be the appro
mate value ofAe* .

According to thermodynamics, the equation of state a
the equation for internal energy are expressed by using
Helmholtz free energyAe* and are given by

p5
NkT

V
z5nkTS 11n*

]Ae*

]n*
D , ~17!

E

Nk
52T2

]

]T S A

NkTD5TS 3

2
2T*

]Ae*

]T*
D , ~18!

respectively. If we considerT as the granular temperatur
Eqs.~17! and ~18! are expressed as follows:

p5rpnTz, z5S 11n*
]Ae*

]n*
D , ~19!

e5cT, c5S 3

2
2T*

]Ae*

]T*
D , ~20!
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wheren5pn* /6 is the volumetric solid fraction in the origi
nal system ande5E/Nmp is the internal energy per uni
mass. Equation~19! is interpreted as the equation of state
the elastic granular system. The termn* ]Ae* /]n* corre-
sponds to the virial term. On the other hand, Eq.~20! is the
relation between the internal energy and the granular t
perature. The term2T* ]Ae* /]T* is related to the preserve
energy due to the elastic deformation, as explained belo

In order to obtainz andc from Eqs.~19! and~20!, some
numerical techniques are needed. The right-hand side of
~16! is calculated numerically for givenn* , T* , and z by
using Simpson’s integral rule, and thenzm , which minimizes
the right-hand side of Eq.~16!, is found numerically. Substi-
tuting zm into Eq. ~16!, we obtain the approximate value o
Ae* for given n* and T* . Applying the same procedure t
the calculation forn* 6Dn* andT* 6DT* , the derivatives
n* ]Ae* /]n* and T* ]Ae* /]T* are also obtained numeri
cally. In this study, we setDT* 50.01T* and Dn*
50.01n* , respectively.

IV. RESULTS AND DISCUSSION

A. Pressure and internal energy of granules

By Eqs.~19! and~20!, the elastic properties of individua
particles can be related to the macroscopic thermodyna
properties of granular materials. Figures 2 and 3 showz and
c, which are obtained from Eqs.~19! and~20!, respectively,
plotted against density for various dimensionless tempera
T* 5mpT/G. As mentioned above,g0

(2)(x) given by Eq.
~13!, which is used for the calculation of Eq.~16!, is valid
only nearx51 and deviates from the exact solution as be
apart from x51. The numerical solution of the Percu
Yevick equation have been shown by Throop and Bearm
@29#. In Figs. 2 and 3, the results that the difference betwe
Eq. ~13! and the solution by Throopet al. is less than 1% of
the absolute value are shown by the solid lines, and the o
less-accuracy data are shown by the broken lines.

It is shown in Fig. 2 that, whenn ~or n* ) is small, the
compressibility factorz approaches 1, which corresponds

FIG. 2. Compressibility factorz versusn and n* for various
dimensionless temperaturesT* .
5-4
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that of an ideal gas.z is increased with the increase inn and,
if T* is significantly small, it is close to that of the hard
sphere systemz0 given by Eq.~15!. On the other hand, asT*
is increased, which means that the particle is heavier
softer for a given fluctuation velocity,z becomes small and
deviates from the hard-sphere system. As is expected, if
density and the granular temperature are constant, the p
sure is smaller in the softer particles.

Figure 3 shows thatc is increased with the increase
T* . This implies that the total energy is divided into th
kinetic ~thermal! energy and the elastic energy due to t
deformation of the particle. WhenT* is small,c is close to
the value for the monatomic gasc53/2. This is because th
interaction between particles occurs instantaneously a
consequently, most of the energy turns into the kinetic
ergy. On the other hand, asT* increases,c increases be-
cause the contact time is significantly large and some pa
the energy is always preserved as the elastic energy.
quantitative discussions on the contact time are given be

c can be also estimated numerically by the DEM simu
tion. It is obtained from the following procedure. The pa
ticles are arranged randomly in a fixed volume so as no
overlap each other, and the Maxwell-Boltzmann velocity d
tribution is applied to them in the form of initial velocityc.
After the simulation is started, the total kinetic energy of t
system decreases from the initial energy and then it beco
constant.c is given by the ratio of the initial energy per un
massc2/2 to the granular temperatureT in a steady state. The
results obtained from the DEM simulation are also shown
Fig. 3 by symbols. It is found thatc obtained theoretically
agree well with the corresponding results by the DEM sim
lation.

The dimensionless temperatureT* (5mpT/G), which is
derived in the process of the perturbation analysis, can
understood more clearly by considering the relation to
contact time. Using the mean fluctuation velocityc̄, the par-
ticle radiusR, the particle densityrp , and the elastic con

FIG. 3. c versusn andn* for various dimensionless tempera
turesT* (Ep is Young’s modulus in Pa,sp is Poisson’s ratio, andT
is the granular temperature in m2/s2).
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T* 5
5

32
p2rp

12sp
2

Ep
~ c̄!2, ~21!

where the relation for the Maxwell-Boltzmann velocityc2

53p( c̄)2/8 is used.
The mean duration of the Hertzian contact is obtain

from the differential equation of the relative distance b
tween the colliding particles. The duration of contact w
the impact velocityv̄c is given by@19#

tc52.943
dm

v̄c

, ~22!

where dm5@15mpv̄c
2(12sp

2)/8A2REp#2/5 is the approach
distance at the maximum compression. The coefficient on
RHS of Eq.~22! is resultant from theG functions~see Ref.
@19#!.

The mean impact velocityv̄c is given by the mean relative
velocity A2c̄ multiplied by a factor due to the impact ang
2/3 (5*0

p/2cosu sin 2udu), whereu is the angle between th
relative velocity vector and the relative position vector of t
colliding particles. Substitutingv̄c52A2c̄/3 into Eq.~22!, tc
is expressed as follows:

tc55.913RS rp

12sp
2

Ep
D 2/5

~ c̄!21/5. ~23!

On the other hand, the mean free timetl , which is the
mean time between collisions of a particle, can be roug
estimated as follows. On the assumption that the effect of
particle deformation is significantly small, i.e., the mean fr
time is the same as that of hard sphere,tl is obtained
from the mean free time in the dilute systemtl0 and the
radial distribution function of the hard-sphere syste
g(n)@5g0

(2)(1)# as follows@30#:

tl5
tl0

g~n!
. ~24!

tl0 is obtained by dividing the mean free pathl05R/3A2n
by c̄. Substituting this relation into Eq.~24!, we obtain

tl5
R

3A2n c̄g~n!
. ~25!

Consequently, the ratio of the mean contact timetc to the
mean free timetl is calculated from Eqs.~23! and ~25! as

t r5
tc

tl
525.08ng~n!S rp

12sp
2

Ep
D 2/5

~ c̄!4/5521.09ng~n!T* 2/5.

~26!

From Eq.~26!, it is found thatT* is simply the function ofn
and t r . If n is given, T* is directly related to the contac
time. By using Eq.~26!, we can estimate the ratio of th
contact time to the mean free time fromT* . For example,
T* 5131024 corresponds tot r50.069 atn50.1.
5-5
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B. Propagation of a piston-shock in granules

In order to examine the properties of the shock wave
soft granular materials, the simulation of the propagation o
piston-driven shock wave in elastic, smooth particles h
been performed. As explained above, the initial density,
initial granular temperature, and the piston speed are g
as the simulation condition and any boundary condition
statistical variables such as the granular temperature is
applied.

Figure 4 shows the typical results of the DEM simulati
for the density profile around a piston-driven shock wave
elastic granular materials. The initial volumetric fraction
particlen0 is 0.105. The elastic properties of the particle a
indicated in the caption of Fig. 4. The horizontal axis is t
dimensionless distancez/l0 (l05R/3A2n0) and the vertical
is the dimensionless timetuw /l0 . M p0 indicates the piston
Mach number calculated by the speed of sound in a di
system and is defined by the initial granular temperatureT0
and the piston speeduw as

M p05uw /AgT0, ~27!

whereg corresponds to the ratio of specific heats thermo
namically and is 5/3 for monatomic gas. Note thatM p0 does
not indicate the ratio of the piston speed to the speed
sound in a dense system, because the speed of sound
pendent on the solid concentration as explained below.
ure 4 shows that the compression wave is generated in f
of the piston and it reflects repeatedly at the piston and
opposite wall with the change in the wave speed. These
tures are similar to those of the piston-driven shock wa
propagating in gas.

Figure 5 shows the numerical results of the density ra
behind and before the shock frontr1 /r0 (5n1 /n0), and
Fig. 6 shows the ratio of the shock speed to the piston sp
Us /uw . The simulation for infiniteM p0 is performed by set-
ting the initial granular temperatureT050. The solid lines in
these figures indicate the results obtained from Rank
Hugoniot relations for an ideal gas@31#. It is found that, if
the system is dilute (n050.0065), it is close to the molecula
gas system and the properties of the shock wave agree

FIG. 4. Propagation of piston-driven shock wave in granu
materials ~contour of solid fractionn), Ep513107 Pa andsp

50.30.
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those of an ideal gas. The density ratio and the shock sp
for a strong shock~infinite M p0) can be calculated from
Rankine-Hugoniot relations and they are expressed by
ratio of specific heatsg as @31#

r1

r0
5

g11

g21
, ~28!

Us

uw
5

g11

2
, ~29!

respectively. Substitutingg55/3 into Eqs.~28! and~29!, we
can obtainr1 /r054 andUs /uw54/3 for a dilute limit. The
numerical results in a dilute case (n050.0065) is close to the
above values for infiniteM p0.

As n0 is increased, the shock properties deviate fro
those of gases. Especially aroundn0.0.1, the shock speed i
suddenly increased and it is considerably large in compar
with that of an ideal gas. The dependence of the shock p
erties on the solid concentration and also the elastic pro
ties of the particle are explained in the following section.

r
FIG. 5. Relation between the piston Mach number for an id

gas, M p0, and density ratior1 /r0 for Ep513107 Pa andsp

50.30.

FIG. 6. Relation between the piston Mach number for an id
gas, M p0, and dimensionless shock speedUs /uw for Ep51
3107 Pa andsp50.30.
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C. Effect of elasticity on shock properties

By using the equation of state@Eq. ~19!# and the equation
for internal energy@Eq. ~20!#, the properties of shock wav
propagated in elastic particles can be obtained theoretic
For simplicity, a one-dimensional strong shock wave gen
ated by a piston is considered. Based on the assumption
the pressure and the internal energy before the shock f
are much smaller than those behind the shock fro
Rankine-Hugoniot conditions for a piston shock wave
given by

r0Us5r1~Us2uw!, ~30!

r0Us
25p11r1~Us2uw!2, ~31!

1

2
Us

25
1

2
~Us2uw!21

p1

r1
1e1 , ~32!

whereuw indicates the piston speed,Us is the shock propa-
gation speed,r(5rpn) is the bulk density, ande is the in-
ternal energy per unit mass. The subscripts 0 and 1 indi
the values before and behind the shock front, respective

If r0 ~or n0) and uw are known, the following relations
for r1 , p1, ande1 are obtained from Eqs.~30!–~32!:

p12
r0r1

r12r0
uw

2 50, ~33!

e12 1
2 uw

2 50. ~34!

On substitutingr5prpn* /6, the above relations are ex
pressed as functions ofn* andT* , respectively, and are

p~n1* ,T1* !2
p

6
rpuw

2
n0* n1*

n1* 2n0*
50, ~35!

e~n1* ,T1* !2 1
2 uw

2 50. ~36!

From Eqs.~19! and~20!, p(n* ,T* ) ande(n* ,T* ) are given
as follows:

p~n* ,T* !5
prp

6 S G

mp
Dn* T* z~n* ,T* !, ~37!

e~n* ,T* !5
GT*

mp
c~n* ,T* !. ~38!

Substituting Eqs.~37! and ~38! into Eqs.~35! and ~36!, the
following relations are obtained:

n1* T1* z~n1* ,T1* !2S mpuw
2

G D n0* n1*

n1* 2n0*
50, ~39!

T1* c~n1* ,T1* !2
1

2 S mpuw
2

G D 50. ~40!

From the above relations, it is found that the properties of
strong shock wave are characterized by a dimensionless
06130
ly.
r-
hat
nt
t,
e

te
.

e
a-

rametermpuw
2 /G. In order to obtainn1* andT1* , the Newton-

Raphson method is applied to Eqs.~39! and ~40!. Let the
left-hand sides of Eqs.~39! and ~40! equal f (n1* ,T1* ) and
g(n1* ,T1* ), respectively, the following relations are calc
lated by iteration:

] f

]n*
a* 1

] f

]T*
b* 52 f , ~41!

]g

]n*
a* 1

]g

]T*
b* 52g, ~42!

where a* 5(n1* ) l 112(n1* ) l , b* 5(T1* ) l 112(T1* ) l and l is
the iteration number. The derivatives off andg are calculated
numerically. If the properties of the particle such asmp and
G, the piston speeduw , and the density before the shoc
@r0(5rpn05rppn0* /6)# are given, the properties for th
strong shock can be calculated by usingn1* and T1* which
are obtained by iteration: density ratio

r1 /r05n1* /n0* ; ~43!

shock speed

Us5n1* uw /~n1* 2n0* !; ~44!

temperature behind the shock

T15GT1* /mp ; ~45!

and elastic energy behind the shock

ee15
uw

2

2
2

3GT1*

2mp
. ~46!

The density ratior1 /r0 and the ratio of the shock spee
to the pistonUs /uw obtained from Eqs.~43! and ~44! are
shown in Figs. 7 and 8, respectively. In the same way
Figs. 2 and 3, less-accuracy data caused by the approxi

FIG. 7. Relation between the solid fraction before shock fro
n0, and the density ratior1 /r0 for a strong shock atT050 (Ep is
Young’s modulus in Pa,sp is Poisson’s ratio, anduw is the piston
speed in m/s!.
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HARADA, TAKAGI, AND MATSUMOTO PHYSICAL REVIEW E 67, 061305 ~2003!
distribution function are shown by the broken lines. Figu
7 and 8 also show the corresponding results obtained f
the DEM simulation. They are calculated on the conditi
that the granular temperature before the shock isT050. It is
found that the numerical and theoretical results show ex
lent agreements on various conditions for density and t
perature.

If the system is adequately dilute, the effect of the parti
collision is insignificant, and in consequence the shock
granular materials behaves as that in ideal gases regardle
the elasticity of the constituent particle. Figures 7 and 8 sh
that the theoretical results approach to the values for id
gas, i.e.,r1 /r054 andUs /uw54/3, respectively, with de-
creasingn0.

In the case of rigid particles, the density ratio and t
shock speed are calculated from the compressibility fa
derived from the Percus-Yevick equation@Eq. ~15!# and Eqs.
~30!–~32!, and are

r1

r0
5

31z0~n1!

z0~n1!
, ~47!

Us

uw
5

31z0~n1!

3
~48!

for the strong shock. As can be seen in Eq.~15!, if the system
is dilute, the virial term in the equation of state is vanish
and z0 is close to 1. In consequence, Eqs.~47! and ~48!
approach asymptotically to Eqs.~28! and ~29! as z0 ap-
proaches to 1. The solutions of Eqs.~47! and ~48! are also
plotted in Figs. 7 and 8. In order to obtain these results,
numerical iteration is used since Eq.~47! is an implicit func-
tion with respect ton1.

From Figs. 7 and 8, it is found that the properties of t
shock are close to those of the hard-sphere system if
dimensionless parametermpuw

2 /G is significantly small. As
mpuw

2 /G is increased, the density behind the shock is
creased due to the compressibility of the particles. Con

FIG. 8. Relation between the solid fraction before shock fro
n0, and the dimensionless shock speedUs /uw for a strong shock at
T050 (Ep is Young’s modulus in Pa,sp is Poisson’s ratio, anduw

is the piston speed in m/s!.
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quently, the shock speed is decreased compared with th
the hard-sphere system so as to satisfy the mass conserv
given by Eq.~30!.

The density ratio and the shock speed in rigid granu
materials have been derived from the granular kinetic the
analogous to that of dense gases. Goldshteinet al. @12# have
defined the radial distribution functiong(n) for granular ma-
terials, which goes to infinity at the maximum packingn
5nM , and have derived the density ratio and the sho
speed from the virial equation:

r1

r0
5

414n1g~n1!

114n1g~n1!
, ~49!

Us

uw
5

414n1g~n1!

3
, ~50!

where

g~n!5
1

12~n/nM !4nM /3
. ~51!

We compared the solutions by the Percus-Yevick approxim
tion @Eqs.~47! and~48!# with Goldshtein’s model@Eqs.~49!
and ~50!# for nM50.64 ~random closest packing! numeri-
cally. Both results do not have a significant difference~less
than several percent of the absolute value! with regard to the
shock properties up ton050.4.

Figure 9 shows the ratio of the kinetic energy behind
shock 3T1/2 to the internal energye15uw

2 /2 @see Eq.~34!#
obtained from Eq.~45! and the corresponding results by th
DEM simulation. It is found that both results are in agre
ment quantitatively. As mentioned above, the internal ene
in elastic particles is divided into the kinetic energy and t
elastic energy. If the system is dilute or the particle is su
ciently hard such that the collision between particles occ
instantaneously, most of the internal energy behind the sh
turns into the kinetic energy, and the granular temperatureT1

is close touw
2 /3. On the other hand, if the system is dense

, FIG. 9. Relation between the solid fraction before shock fro
n0, and the dimensionless granular temperature behind shock
3T1 /uw

2 for a strong shock atT050 @Ep : Young’s modulus~Pa!,
sp : Poisson’s ratio anduw : piston speed~m/s!#.
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WAVE PROPAGATION IN A DYNAMIC SYSTEM OF . . . PHYSICAL REVIEW E 67, 061305 ~2003!
the constituent particle is soft, some of the energy is store
the elastic deformation. From Fig. 9, it is found that the ra
of the elastic energy to the total energy depends on the
rametermpuw

2 /G, and is increased asmpuw
2 /G is increased.

From these results, it is found that the shock wave pro
gating in soft granules is influenced by the elastic proper
of the constituent particles. As is mentioned above, the
ergy dissipation due to inelastic collision~including friction!
causes a drastic change in the wave propagation. Fur
more, in many actual systems, such as vertically vibra
beds, the force considerably affects the wave propaga
and it complicates the matter. The constitutive relations
tained from this analysis are derived on the assumption
the system is idealized~i.e., conservative, in the absence
the gravity!, however, they are useful for understanding t
dynamic properties of soft particles in various systems.

D. Speed of sound

The speed of sound in a dynamic system of soft granu
can be obtained from the equation of state@Eq. ~19!# and the
equation for the internal energy@Eq. ~20!#. The speed of
sounda is given from the adiabatic change of the pressure
follows:

a5AS ]p

]r D
s

5A 1

rp
S ]p

]n D
s

. ~52!

From the thermodynamic relations, (]p/]n)s is expressed as
follows:

S ]p

]n D
s

5S ]p

]n D
T

1
T

rpn2 S ]p

]TD
n

2S ]e

]TD
n

21

. ~53!

Expressing each term of Eq.~53! in z and c by using Eqs.
~19! and~20!, and then substituting into Eq.~52!, we obtain
the speed of sound in elastic granules as

a5AzTF11
q

z
1

n

z S ]z

]n D
T
G , ~54!

where

q5
@z1T~]z/]T!n#2

c1T~]c/]T!n
.

If the system is dilute, the compressibility factorz51 and
c53/2 because the stored energy due to the elastic defo
tion is significantly small compared to the kinetic energ
Substituting these values into Eq.~54!, the speed of sound
for a dilute limit is obtained as

a5A5

3
T. ~55!

Equation ~55! corresponds to the speed of sound in mo
atomic gasesAgT ~the ratio of specific heatsg55/3).

Furthermore, if the particles are rigid, the compressibi
factor is only a function ofn as shown in Eq.~15!. c is equal
06130
as

a-

a-
s

n-

er-
d
n
-
at

s

s

a-
.

-

to 3/2 because the internal energy merely consists of
kinetic energy. Consequently, Eq.~54! becomes *2mm

a5Az0TS 11
2

3
z01

n

z0

dz0

dn D . ~56!

Equation~56! agrees with the speed of sound in the ha
sphere system, which is derived from the kinetic theory
granular materials without energy dissipation@10#.

Figure 10 shows the dimensionless speed of sounda/T1/2

obtained from Eq.~54!. The derivatives ofz and c in Eq.
~54! are calculated numerically in the same way as
method used in the perturbation analysis. From Fig. 10, i
found that the speed of sound decreases with the increa
T* for a given n* ~or n). That is, the propagation of a
acoustic wave in soft particles is slower than that in ha
particles.

V. CONCLUSIONS

Theoretical and numerical studies on wave propagatio
a dynamic granular system have been carried out. The t
modynamic perturbation method has been applied to
elastic granular system and some thermodynamicrelat
have been derived. The properties of the shock wave in
particles derived theoretically have been in an excell
agreement with the results of the numerical simulation by
discrete element method. Moreover, the speed of sound
been derived theoretically and compared with the previ
study by the kinetic approach. The analyses have quan
tively shown that, from the thermodynamic point of view, th
softness of the particle influences the wave not only b
change in the compressibility, but also by a reduction in
temperature due to the conversion to the elastic energy.
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FIG. 10. Speed of sound in elastic granular materials.
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